Strength of the porcine proximal femoral epiphyseal plate: the effect of different loading directions and the role of the perichondrial fibrocartilaginous complex and epiphyseal tubercle – an experimental biomechanical study

نویسندگان

  • Páll Sigurgeir Jónasson
  • Lars Ekström
  • Anna Swärd
  • Mikael Sansone
  • Mattias Ahldén
  • Jón Karlsson
  • Adad Baranto
چکیده

BACKGROUND The high loads on adolescent athletes' musculoskeletal system are known to cause morphological and degenerative changes in bone, intervertebral discs and joints. It has been suggested that the cam deformity of the proximal femoral head originates from a subclinical slipped capital femoral epiphysis (SCFE) as a result of non-physiological loading. The perichondrial fibrocartilaginous complex (PFC) and the epiphyseal tubercle are believed to stabilise the proximal femoral epiphysis, but their role is still unclear. The aim of the present study was to develop an experimental, biomechanical model to evaluate the strength of the porcine proximal femoral epiphysis in different loading directions and, furthermore, to investigate the stabilising role of the PFC and the epiphyseal tubercle. METHODS A descriptive laboratory study. An in-vitro model was developed and nine young (5 months) porcine proximal femoral epiphyses were loaded to failure; three in the anterior-posterior direction, three in the lateral-medial direction and three in the vertical direction. The injured proximal femoral epiphyses were then examined both macroscopically and histologically. RESULTS Anterior and lateral loading of the proximal femoral epiphysis resulted in failure of the epiphyseal plate, while vertical loading resulted in a fracture epiphyseolysis. The epiphysis was weakest when exposed to a lateral load and strongest when exposed to a vertical load. Despite histological epiphyseolysis, the PFC was intact in 15 of 27 (56%) slices. In histological examinations, the epiphyseal tubercle appears to halt the slide of the epiphysis. CONCLUSIONS We have developed an experimental, biomechanical model to measure the strength of the proximal femoral epiphyseal plate in different loading directions. The strength of the proximal femur was weakest through the epiphyseal plate. The epiphysis was weakest when exposed to a lateral load and strongest when exposed to a vertical load. The epiphyseal tubercle and the PFC stabilise the epiphysis when the epiphyseal plate is damaged. The findings in the present study indicate that overloading the hips in growing individuals can disrupt the epiphyseal plate. These findings may have implications when it comes to understanding the pathogenesis of cam deformity of the hip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مطالعه هیستومورفومتریک اثر سم دیازینون بر پلاک رشد استخوانی موش صحرایی نر

Background: Bone is a hard and dynamic tissue, which continually undergoes remodeling process. Longitudinal growth of bone is mediated by growth plate that is a cartilage structure at the end of long bones. During puberty, along with the closure (ossification) of growth plate, the longitudinal growth of bone will stop. Diazinon is one of the widely used organophosphorus pesticides that have bee...

متن کامل

Axillary artery injury with proximal humerus epiphyseal separation: a rare case report

 Fracture of the proximal humerus associated with vascular injury has rarely been reported in children, and only two cases have been reported in the literature. In adults this combination has been reported more frequently. We present the case of a 14 year old boy with proximal humeral epiphyseal separation and axillary artery injury. 

متن کامل

Challenges of Plate Fixation for Vancouver Type-C Fractures after a Well-Fixed Hip Arthroplasty Femoral Stem

The fixation of distal femoral fractures (Vancouver type-C fractures) following a well-fixed hip arthroplasty femoral stem has become a challenging issue for orthopedic surgeons due to the inter-prosthetic biomechanical effects such as negative, positive, and torsional strain. Surgeons have applied a range of constructs to overcome these difficulties. To minimize the risk of inter-prosthetic fr...

متن کامل

The Effects of Physical Activity on the Epiphyseal Growth Plates: A Review of the Literature on Normal Physiology and Clinical Implications

BACKGROUND Children need physical activity and generally do this through the aspect of play. Active play in the form of organized sports can appear to be a concern for parents. Clinicians should have a general physiological background on the effects of exercise on developing epiphyseal growth plates of bone. The purpose of this review is to present an overview of the effects of physical activit...

متن کامل

Influence of Circular and Square Cut-outs on Fiber Glass/Epoxy Composite Laminate under Tensile Loading

Use of composites for a range of structural application in aircrafts, space-crafts, automobiles, etc., has widely spread in the last few years. Other than weight reduction, cut-outs provide pathways to link different aircraft parts. In this paper, an experimental investigation was conducted to study the effect of a cut-out on the tensile strength of the fiber glass/ epoxy composite plate. Geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014